
Supplementary Material 1: Paleomagnetism and Rock Magnetism 
 
 

1.   Material and Methods. 

 

General information on sample collection and preparation is presented in the main 

text. The magnetic mineralogy of the sediment was investigated by means of analyses 

of thermomagnetic curves. Representative specimens from the trimmed ends of the 

cores were heated in air up to 650°C in an inducing field of ~ 800 mT, using a 

variable field translation balance (VFTB; Krása et al., 2007). Curie temperatures of 

the heating cycles were determined by analyses of second-derivative curves (Tauxe, 

1998) calculated with the RockMagAnalyzer software of Leonhardt (2006). The 

natural remanent magnetization (NRM) of the oriented specimens was investigated 

through stepwise thermal demagnetization up to a maximum temperature of 575 °C, 

with initial steps of 50 °C reduced to 25 °C from 400 °C onward. The NRM was 

measured after each demagnetization step using a 2-G Enterprises superconducting 

magnetometer placed in a shielded room. The component structure of the NRM was 

examined by means of vector endpoint demagnetization diagrams (Zijderveld, 1967). 

Magnetic components were isolated applying standard least-square analysis 

(Kirschvink, 1980) on linear segments of the demagnetization paths. Mean directions 

and associated statistic parameters were calculated using the spherical statistic of 

Fisher (1953). Directional analyses were performed with the PaleoMag software of 

Jones (2002). All the analyses were conducted at the paleomagnetic laboratory of the 

Ludwig-Maximilian University (Munich, Germany). 

 

2.   Results. 

 

The heating cycle of the thermomagnetic curves from all sites (except for the 

Patrignone Creek section) is characterized by a decrease of magnetization up to ~ 575°C, 

which is the Curie temperature of magnetite (Fig. 1a-c). This decay is interrupted by a 

smooth increase of magnetization that peaks at ~ 500 °C, not visible in the cooling 

cycle. Similar behavior has been observed in sediments containing ferriferous phases 

like pyrite, siderite, and Fe-enriched smectite (Hirt and Gehring, 1991; Hirt et al., 1993; 

Passier et al., 2001; Dallanave et al., 2015). In the specimen from the Patrignone 

Creek section (Fig. 1d) the magnetic phase appears to be dominated by greigite; the 

minimum of magnetization between 300 °C and 400 °C is a common feature of 

thermomagnetic experiments of samples containing greigite, which irreversibly breaks 

down during heating above ~ 280 °C (Roberts, 1995; Roberts et al., 2011). This 

decay is followed by a marked peak of magnetization at ~ 500 °C, indicating the 



formation of magnetite from the greigite precursor (e.g., Roberts et al., 2011). 

Magnetite is then the dominant mineral during the cooling cycle, which back at room 

temperature shows a magnetization ~ 6 times higher than before thermal treatment. 

The intensity of the NRM varies widely between the sites. The highest values are 

observed at Bulera, with an average initial magnetization of the samples of 1.89 Am
-1

, 

while the minimum average value of 4.14 x10
-5 

Am
-1 

is observed at Cava Gosti, 

where, however, no suitable magnetic directions were isolated. The average intensity 

NRM of all the samples is 0.4 Am
-1

. Scattered magnetic component directions are 

observed between room temperature and generally 150–300 °C. Characteristic magnetic 

component (ChRM) directions linearly trending to the origin of the demagnetization 

axes were isolate in 66% (
97

/148) of the samples generally up to 450–550°C (Fig. 2a-i). 

The lowest ChRM component unblocking temperatures (300–350°C) have been 

observed at Magliano and Patrignone Creek sections (Fig. 2j). These data, together 

with the thermomagnetic remanence curves described above, reveal that the primary 

magnetization is generally carried by magnetite except at Magliano and Patrignone 

Creek, where greigite is the dominant magnetic phase. Of the 11 sampling sites where 

ChRM directions were isolated, 6 are characterized by the presence of directions 

pointing North-and-down, 3 of directions pointing South-and-up, while 2 of directions 

pointing in both the modes (Fig. 3a-k). We calculated the mean ChRM direction for 

all sites before and after correction for bedding tilt if present; for Poggio del Gallo and 

Casciana Terme, we calculated the mean ChRM direction for both the N-and-down 

and S-and-up modes. We calculated the statistical parameter of Fisher (1953) 

associated to each mean ChRM direction except at Montegabbro and Pescille, where 

only 2 directions were available. The results are shown in Fig. 3a-k and listed in Table 

1. We plotted all the site-mean directions (Fig. 3l) and we calculated the average 

direction of both the N-and-down and S-and-up modes (Table 1). They depart from 

antipodality by 7.1°, passing the reversal test with class “B” of McFadden and 

McElhinny (1990). 

For each site, we calculated the position of the virtual geomagnetic pole 

(VGP) associated to each ChRM direction. We interpreted the magnetic-polarity 

stratigraphy using the latitude of each VGP relative to the mean paleomagnetic north 

pole (Kent et al., 1995; Lowrie and Alvarez, 1977). VGP relative latitudes approaching 

+90° or -90° N are interpreted as recording normal or reverse polarity, respectively. 

Results are shown in Fig. 4. The detailed chronostratigraphic correlation of each site is 

described in Table 3 of the main text. 

 

 

 



Figure Captions 

 

Figure 1. Representative thermomagnetic curves of specimens from Bulera (bp05), 

Pescille (pp04), Roccastrada (rp02), and Patrignone Creek sections (mp03); M = 

magnetization. Insets show second derivative-curves of the heating cycles between 

500 and 700 °C, used to estimate the Curie temperature of the magnetic phase. Only 

thermomagnetic curves b) and c) are corrected for a diamagnetic component due to 

the high carbonate concentration in the sediment. 

 

Figure 2. Representative vector end-point demagnetization diagrams of thermally 

demagnetized core specimens from different sites. A) Bulera, sample  bp09; B) 

Colombaio, sample cp02; C)  Montefollonico, sample mfp05; D) Montegabbro, 

sample mgp02; E) Pescille, sample pps03; F) Cetona–Poggio del  Gallo, sample 

pgp17; G) Pianosa, sample pm05; H) Casciana Terme, sample pp01; I) Roccastrada, 

sample rp03; J) Patrignone Creek, sample mp04a). Closed (open) squares represent 

vector end points projection onto horizontal (vertical) plane. Dashed lines highlight 

the ChRM directions trending to the origin of the demagnetization axes. 

 

Figure 3. A-K) Tilt-corrected equal area projection of the ChRM directions for each 

site; filled (open) squares  represent down  (up) pointing ChRM  directions; filled 

(open) circles are the down (up) pointing mean ChRM directions with associated α95 

(gray circle). The α95  parameter has not been calculated for sites with 2 ChRM 

directions. L) Tilt-corrected equal area projection of the N-and-down (filled squares) 

and S-and-up (open squares) mean ChRM directions from all sites, with the average 

direction calculated for both the modes (filled and open circles) and the associated 

α95; the closed diamond is the all-sites mean direction calculated inverting all site- 

means to a common North pointing polarity, shown with the associated α95. 

 

Figure 4. Virtual geomagnetic pole (VGP) latitude calculated from the ChRM 

direction of each site, plotted vs. the stratigraphic position of the samples. The relative 

latitude of the poles was used to interpret the magnetic polarity (MP): black (white) 

bars indicate normal (reverse) polarity. Gray bars represent intervals where no suitable 

magnetic directions were isolated. 

 

Table 1. Characteristic component mean directions. 
 

Bedding = strike and dip of the sampled strata (°); N = number of samples (* = 

number of site means); MAD = average maximum angular deviation (°); k = Fisher 

precision parameters; α95 = Fisher radius of cone of 95% confidence; Dec and Inc = 



declination and inclination (°); NPD = normal polarity (north-and-down pointing) 

directions; RPD = reverse polarity (south-and-up pointing) directions. 
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