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APPENDIX A – Forward compositional modelling
 " Tracing transcontinental sand transport:

 from Anatolia-Zagros to the Rub' al Khali sand sea" 
by Garzanti, E., Vermeesch, P., Al-Ramadan, K.A., Andò, S., Limonta, M., Rittner, M., Vezzoli, G.
________________________________________________________________________________
Terrigenous fluvial sediments are complex mixtures of single detrital minerals and rock fragments supplied in various proportions by numerous different end-member sources (e.g., rivers, tectonic units, parent lithologies) to successive segments of a sediment-routing system. If the compositional signature of detritus in each end-member source is known accurately, then the relative contributions from each source to the total sediment load can be quantified mathematically with forward mixing models (Draper and Smith 1981; Weltje, 1997). Several assumptions are made to derive a forward model from a series of compositions (Weltje and Prins 2003): 1) the order of the compositional variables or categories is irrelevant (permutation invariance); 2) the observed compositional variation reflects linear mixing or an analogous process with a superposed measurement error; 3) end-member compositions are fixed; 4) end-member compositions are as close as possible to observed compositions.

1. Compositional data

Geological data are often presented in percentages that represent relative contributions of the single variables to a whole (i.e., closed data; Chayes, 1971). This means that the relevant information is contained only in the ratios between variables of the data (i.e., compositions; Pawlowsky-Glahn and Egozcue, 2006). Compositional data are by definition vectors in which each variable (component) is positive, and all components sum to a constant c, which is usually chosen as 1 or 100.
The sample space for compositional data with D variables is not the real space RD, but the simplex SD (Aitchison, 1986)
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Karl Pearson (1897) first highlighted problems that arise with the analysis of such compositional datasets. The obvious and natural properties of compositional data are in fact in contradiction with most methods of standard multivariate statistics. Principal-component analysis, for instance, may lead to questionable results if directly applied to compositional data. In order to perform standard statistics, a family of logratio transformations from the simplex to the standard Euclidean space were introduced (Aitchison, 1986; Egozcue et al., 2003; Buccianti et al., 2006). 

2. The mixing model 

The forward mixing model (regression model) stipulates a linear relationship between a dependent variable (also called a response variable) and a set of explanatory variables (also called independent variables, or covariates). The relationship is stochastic, in the sense that the model is not exact, but subject to random variation, as expressed in an error term (also called a disturbance term).

Let y be the row vector of compositional data with D columns representing variables, X a matrix of end-member compositions with n rows representing observations and D columns representing variables, and β a row vector of coefficients with q = n columns representing the proportional contribution of the end members to the observation. In matrix notation, a forward mixing model can be expressed as
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The row vector y consists of a non-negative linear combination β of q end-member compositions, and e is the row vector of errors with D columns representing variables. 

In order to solve the linear-regression problem, we must determine an estimation of the row vector β describing a functional linear relation b between a matrix of end-member compositions X and an output row vector y. The solution of Equation 2 consists in the calculation of the row vector of coefficients b such that
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 is a row vector of calculated compositional data with D columns representing variables. This equation represents a forward mixing model (or "perfect mixing"). The model parameters are subject to the following non-negativity and constant-sum constraints
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It follows from Equations 4 and 5 that
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and thus
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The goodness of ﬁt of the forward mixing model can be assessed by the coefficient of multiple correlation R 
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where RSS is the residual sum of squares
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and TSS is the total sum of squares
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The coefficient R departs from a decomposition of the total sum of squares into the “explained” sum of squares (the sum of squares of predicted values, in deviations from the mean) and the residual sum of squares. R is a measure of the extent to which the total variation of the dependent variable is explained by the forward model. The R statistic takes on a value between 0 and 1. A value of R close to 1, suggesting that the model explains well the variation in the dependent variable, is obviously important if one wishes to use the model for predictive or forecasting purposes. In provenance studies, the coefficient of multiple correlation R measures the similarity between theoretical detrital modes of sediments supplied by different combinations of diverse end-member sources and the observed detrital mode of one trunk-river sediment or sedimentary rock in the basin.
TABLE CAPTIONS 

Table A1. Sample location. Location of the studied sediment samples with year of sampling (see also Google EarthTM file Arabia&Gulf.kmz).

Table A2. Sand petrography. GSZ = grain size. Q = quartz; F = feldspars (KF = K-feldspar; P = plagioclase; Mic = cross-hatched microcline); L = aphanitic lithic grains (Lvf = felsic volcanic and subvolcanic; Lvm = intermediate to mafic volcanic and subvolcanic; Lcc = limestone; Lcd = dolostone; Lh = chert; Lp = shale/siltstone; Lms = low-rank metasedimentary; Lmv = low-rank metavolcanic; Lmf = high-rank metapelite/metapsammite/metafelsite; Lmb = high-rank metabasite; Lu = ultramafic). HM = heavy minerals. The Metamorphic Indices MI and MI* express the average metamorphic rank of rock fragments in each sample. MI varies from 0 (detritus shed by exclusively sedimentary and volcanic cover rocks) to 500 (very-high-rank detritus shed by exclusively high-grade basement rocks). MI* considers only metamorphic rock fragments, and thus varies from 100 (very-low-rank detritus shed by exclusively very low-grade metamorphic rocks) to 500 (Garzanti and Vezzoli, 2003). Lc = Lcc+Lcd. Lv = Lvf+Lvm+Lmv/2; Ls = Lc+Lh+Lp+Lms/2; Lm = Lmf+Lmb+Lms/2+Lmv/2. Lvbu = Lv+Lmv+Lmb+Lu; Lch = Lc+Lh; Lsm = Lp+Lms+Lmf; n.d. = not determined.
Table A3. Heavy minerals. HM heavy minerals; tHM = transparent heavy minerals; HMC and tHMC = total and transparent-heavy-mineral concentration indices (Garzanti and Andò, 2007); n.d. = not determined. The ZTR index (sum of zircon, tourmaline, and rutile over total transparent heavy minerals; Hubert 1962) evaluates the “chemical durability” of the detrital assemblage. The HCI (Hornblende Colour Index) and MMI (Metasedimentary Minerals Index) vary from 0 in detritus from greenschist-facies to lowermost amphibolite-facies rocks yielding exclusively blue/green amphibole and chloritoid, to 100 in detritus from granulite-facies rocks yielding exclusively brown hornblende and sillimanite, and are used to estimate the average metamorphic grade of metaigneous and metasedimentary source rocks, respectively (Andó et al. 2014).
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