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Geostatistical Techniques 

In geostatistics, spatial variation is modelled as comprising two distinct parts, a deterministic 

component μ(x) and a stochastic (or ‘random’) component R(x) where x represents location. This 

is termed a random function (RF) model. The upper case Z refers to the RF whereas lower case z 

refers to a data realisation of the RF model, called a regionalised variable (ReV). In geostatistics, 

a spatially-referenced variable z(x) is treated as an outcome of a RF Z(x). The Theory of 

Regionalised Variables (Matheron, 1971) is the fundamental framework on which geostatistics is 

based. In a classical framework, geostatistical analysis usually involves two stages: (i) estimation 

of the variogram and fitting a model to it and (ii) use of the variogram model coefficients for 

spatial prediction (kriging) or simulation.  

 

Variography 

The variogram is a core tool in geostatistical analysis and is required for geostatistical spatial 

prediction. The variogram characterises spatial dependence in the property of interest such as 

permeability or porosity. In simple terms, the variogram is estimated by calculating half the 

average squared difference between all the available paired measurements separated by a given 

lag tolerance, where lag h is a separation vector (distance and direction). The experimental 

variogram, )(ˆ hγ , can be estimated from p(h) paired observations, z(xα), z(xα + h), α = 1, 2,… 

p(h) using: 

 

{ }∑
=

+−=
)(

1

2)()(
)(2

1)(ˆ
h

hxx
h

h
p

zz
p α

ααγ                (1) 

 

A mathematical model may be fitted to the experimental variogram and the coefficients of this 

model can be used for a range of geostatistical operations such as spatial prediction (kriging) and 



conditional simulation. A model is usually selected from one of a set of authorised models. 

McBratney and Webster (1986) provide a review of some of the most widely used authorised 

models. The various parameters of the models fitted to experimental variograms can be related to 

structural features in a rock face or succession (McKinley et al. 2004). For example, in bounded 

or transitive types of model, the range parameter provides information about the maximum scale 

of spatial variation.  

 

Kriging 

Kriging is a smoothing interpolator since kriging predictions are weighted moving averages of 

the available data. The most widely used variant of kriging, termed ordinary kriging (OK) is used 

in this study. OK allows the mean to vary spatially: the mean is estimated for each prediction 

neighbourhood from the available data.  

 

The OK weights define the best linear unbiased predictor (BLUP). The OK prediction, )(ˆ 0OK xz , 

is defined as: 
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given n,...1=α  available data )(ˆ αxz , with the constraint that the weights, OK
αλ , sum to 1 to 

ensure unbiased prediction: 
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The kriging prediction error must have an expected value of 0:  
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The kriging (or prediction) variance, 2
OKσ , is expressed as: 
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That is, we seek the values of λ1,…, λn (the weights) that minimise this expression with the 

constraint that the weights sum to one (equation 3). This minimisation is achieved through 

Lagrange Multipliers. The conditions for the minimisation are given by the OK system 

comprising n + 1 equations and n + 1 unknowns: 
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where )( βαγ xx −  represents the semivariance between the available data and themselves, 

)( 0xx −αγ  represents the semivariance between the available data and the prediction location 

x0, and OKψ  is a Lagrange multiplier. Knowing OKψ , the prediction variance of OK can be given 

as: 
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The kriging variance is a measure of confidence in predictions and is a function of the form of 

the variogram, the sample configuration and the sample support (the area over which an 

observation is made, which may be approximated as a point or may be an area; Journel and 

Huijbregts, 1978). The kriging variance is not conditional on the data values locally and this has 

led some researchers to use alternative approaches such as conditional simulation (discussed in 

the next section) to build models of spatial uncertainty (Goovaerts, 1997).  

 



Conditional simulation 

As stated previously, kriging predictions are weighted moving averages of the available sample 

data. Kriging is, therefore, a smoothing interpolator. Conditional simulation (also called 

stochastic imaging) is not subject to the smoothing associated with kriging (conceptually, the 

variation lost by kriging due to smoothing is added back) as predictions are drawn from equally 

probable joint realisations of the Random Variables (RVs) which make up a RF model (Deutsch 

and Journel, 1998). That is, simulated values are not the expected values (i.e., the mean), but are 

values drawn randomly from the conditional cumulative distribution function (ccdf): a function 

of the available observations and the modelled spatial variation (Dungan, 1999). Simulated 

realisations represent a possible reality whereas kriging predictions do not. Therefore SGS 

realisations can be used to represent possible variation for properties of a rock face or succession 

whereas kriging produces a smoothed interpolation of the data. The simulation is considered 

“conditional” if the simulated values honour the observations at their locations (Deutsch and 

Journel, 1998). Simulation allows the generation of many different possible realisations which 

encapsulate the uncertainty in spatial prediction (Journel, 1996) and thus may be used as a guide 

to potential errors in the characterisation of variation in rock properties (Journel, 1996).  

 

Probably the most widely used form of conditional simulation is sequential Gaussian simulation 

(SGS) as used in this study. With sequential simulation, simulated values are conditional on the 

original data and previously simulated values (Deutsch and Journel, 1998). In SGS the ccdfs are 

all assumed to be Gaussian. The SGS algorithm follows several steps (Goovaerts, 1997; Deutsch, 

2002) as detailed below: 

 

1. Apply a standard normal transform to the data. 

2. Go to the location 1x . 

3. Use SK (note OK is often used instead; see Deutsch and Journel 1998 about this issue), 

conditional on the original data, )( αxz , to make a prediction. The SK prediction and the kriging 

variance are parameters (the mean and variance) of a Gaussian ccdf: 
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4. Using Monte Carlo simulation, draw a random residual, )( 1xlz , from the ccdf. 

5. Add the SK prediction and the residual to give the simulated value; the simulated value is 

added to the data set. 

6. Visit all locations in random order and predict using SK conditional on the n original data and 

the i-1 values, )( i
lz x , simulated at the previously visited locations jx ,  j=1,…,n to model the 

ccdf: 
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7. Follow the procedure in steps 4 and 5 until all locations have been visited (that is, until 

realisations l = 1,…, L have been obtained). 

8. Back transform the data values and simulated values.    

 

By using different random number seeds, the order of visiting locations is varied and multiple 

realisations can be obtained. In other words, since the simulated values are added to the data set, 

the values available for use in simulation are partly dependent on the locations at which 

simulations have already been made and, because of this, the values simulated at any one 

location vary as the available data vary. SGS is discussed in detail in several texts (e.g., 

Goovaerts, 1997; Deutsch and Journel, 1998; Chilès and Delfiner, 1999; Deutsch, 2002).   

 

GEOGRAPHICALLY WEIGHTED REGRESSION (GWR) 

This section describes the basic global linear regression model and its extension to 

geographically weighted regression (GWR) (local regression with spatially varying parameters).  

 

Linear Regression 

The basic linear regression model is: 
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predicting the target variable yi at location i as a function of m parameters β0 and βk (k=1, …, m-

1) and m-1 explanatory variables xki. The model includes an independent normally distributed 

error term with zero mean εi. Usually, the least squares method, based on matrix algebra, is used 

to estimate the βks. This is readily expressed in matrix notation as; 

 

( ) yxxxβ tt 1ˆ −=        (11) 

 

where β̂  is a single column vector of estimated parameters (i.e., regression coefficients), a first 

column of 1s and the m-1 explanatory variables fill the m columns of x, the target variable fills 

the single column of y and t indicates the transpose of a matrix. The single column of 1s in the 

matrix x allows estimation of β0.  

 

Equation 10 is a stationary model of the relations between y and x, that is, a model in which the 

parameters of the model are constant irrespective of geographical location. Thus, the model is 

appropriate only where the relations may reasonably be modelled as invariant over space. Where 

the relations are expected or known to change with geographical location it is necessary to apply 

a spatially non-stationary model: one that allows variation in the parameters of the model as one 

moves from place to place. Non-stationary regression modelling is not new, but Brunsdon et al. 

(1999) developed the approach and termed it geographically weighted regression (GWR). GWR 

offers a basis upon which to address some of the limitations of conventional global regression 

models described in the introduction.  

 

Geographically Weighted Regression 

GWR extends the traditional regression model of Equation 10 to the non-stationary case by 

allowing the β coefficients to vary with geographical location i: 
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where βik is the value of the kth parameter at location i. Equation 10 is a special case of the more 

general Equation 12, where the parameters do not vary across space.  

 

A potential problem with Equation 5 is that there is only one observation at each i for the target 

variable yi and the m-1 explanatory variables xik. To provide sufficient observations with which 

to fit a local regression model for each i, Brunsdon et al. (1999) considered the relation between 

y and x within a moving window around i, while acknowledging that such an approach involves 

approximation.  

 

The weighted least squares (WLS) approach to fitting regression models provides a means by 

which to vary the influence of individual observations on the fitted model. Specifically, in WLS 

a weight wi is applied to each squared difference before minimisation. The weights are usually 

chosen to inversely reflect some measure of uncertainty so that more uncertain observations are 

assigned less weight. If w is the diagonal matrix of the wis then Equation 11 can be extended 

readily as: 

 

( ) wyxwxxβ tt 1~ −=       (13) 

 

Since the diagonal weights matrix w varies with location j, such that a different calibration exists 

for each j, it is helpful to write Equation 6 more strictly as: 

 

( )( ) ( )yjwxxjwxβ tt 1~ −=      (14) 

 

Location has now been referenced by j rather than i because the location at which a model is 

fitted need not equal the location of the available data i.  

 

Brunsdon et al. (1999) consider a range of possible weighting functions for use in Equation 7. 

These include a simple step function: 

 



⎪⎩

⎪
⎨
⎧

=

<=

otherwise      0

      if      1

ij

jijij

w
ddw

     (15) 

 

where dij is the distance between the location i of an observation used in model fitting and the 

location j at which the model is fitted. This weighting function is fast because the number of data 

used in the regression model is limited. However, its discontinuous nature can result in artefacts 

(spatial discontinuities) in the regression coefficients. An alternative is to specify wij as a 

continuous function of dij. The exponential function is a common choice: 
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where, a is a non-linear parameter. As a compromise between the computational saving of 

Equation 15 and the continuity of Equation 16, Brunsdon et al. (1999) suggest using the bisquare 

function: 
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The essential idea of GWR, whatever weighting function is chosen, is to give more weight to 

observations close to the location j at which the regression model is desired than to those 

observations that are further away. In this sense, the method has some parallels with 

geostatistical techniques for local prediction, as described above. 
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