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INTRODUCTION
	 Submarine channels are conduits for sediment-gravity 
flows that sculpt continental margins as they carry terrigenous 
sediment to the deep sea (Piper and Normark, 2001). 
Sediment-gravity flows are mixtures of sediment and water 

in which the sediment component pulls interstitial water 
down slope under the influence of gravity (Bagnold, 1962; 
Middleton and Hampton, 1973). Submarine channels are 
important components of deep-sea fans, which comprise 
canyon, channel, levee-and-distal-overbank, and depositional-
lobe architectural elements (Mutti and Normark, 1987; 
Normark et al., 1993; Piper and Normark, 2001; Posamentier 
and Kolla, 2003). Submarine canyons transition to U-shaped, 
lower-relief channels with levee-and-distal-overbank deposits 
across the slope and rise of continental margins. Channels 
can extend across the seafloor for hundreds to thousands of 
kilometers (Covault et al., 2011; 2012), and their deposits can 
host significant hydrocarbon resources (Mayall et al., 2006). 
	 Submarine-channel evolution is a result of the interaction 
between the seafloor within and around the channel, and 
overriding sediment-gravity flows. Sediment-gravity flows 
have rarely been directly observed in the ocean (Talling et al., 
2015). However, recent monitoring data record the hourly 
to annual interaction between submarine channels and 
sediment-gravity flows (e.g., Zeng et al., 1991; Xu et al., 2004; 
Paull et al., 2010; Conway et al., 2012; Cooper et al., 2013; 
Sumner and Paull, 2014; Talling et al., 2015; Hughes Clarke, 
2016). These data underscore the short-term transience of 
seafloor geomorphology and multi-phase bed reworking, 
local deposition, and bypass of sediment-gravity flows active 
during channel initiation, maintenance, and filling (e.g., 
Covault et al., 2014). Furthermore, insights from monitoring 
have inspired reinterpretation of outcropping sedimentary 
rocks (e.g., Fildani et al., 2013; Hubbard et al., 2014; Postma 
et al., 2014; Bain and Hubbard, 2016; Pemberton et al., 
2016). Missing from the short-term record of monitoring is a 
longer-term perspective, which is afforded by outcropping and 
subsurface stratigraphic successions (e.g., Deptuck et al., 2003; 
Hubbard et al., 2014). 
	 Here we summarize the facies architecture and stratigraphic 
evolution of outcropping submarine-channel systems. Many 
outcropping channel fills exhibit a common facies architecture 
of thick-bedded sandstone deposited in the deepest segment 
of the bounding channel surface (i.e., the thalweg) that 
transitions laterally to thin-bedded heterolithic deposits in 
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the margins (Beaubouef et al., 1999; 
Pyles et al., 2010; Hubbard et al., 
2014). Channel fills are also associated 
with scour surfaces draped by variable 
mudstone-rich units (Barton et al., 
2010; Alpak et al., 2013; Macauley and 
Hubbard, 2013). 
	 Subsurface and outcropping channel 
systems form a composite record of 
stacked channel fills, recording an 
evolution from early channel incision 
and lateral migration to late-stage 
aggradation (Peakall et al., 2000; 
Deptuck et al., 2003; Hodgson et 
al., 2011; Sylvester et al., 2011). We 
illustrate the incising-to-aggrading 
trajectory of a channel system in a 3D 
surface-based stratigraphic forward 
model. The model records the 3D 
stacking patterns of a channel system, 
which is a principal control on fluid 
flow behavior during hydrocarbon 
production (e.g., Larue and Hovadik, 
2006; Stright, 2006; Labourdette, 
2007; Stewart et al., 2008; Funk et al., 
2012; Alpak et al., 2013). We review 
the implications of channel-system 
stratigraphic evolution for channelized 
reservoir heterogeneity, connectivity, 
and performance. We also highlight 
opportunities for research on submarine-
channel architecture and evolution.

SUBMARINE-CHANNEL 
FACIES 
	 Sediment-gravity flows modify 
channels by erosion and deposition, 
and in the long term this results in the 
migration of the active channel floor 
and the preservation of deposits in its 
wake (Sylvester et al., 2011). Turbidites 
and debrites are end members of the 
spectrum of sediment-gravity-flow 
deposits. Turbidites are deposited by 
turbidity currents, in which sand and 
mud are suspended by the upward 
component of fluid turbulence; debrites 
are deposited by debris flows, in which 
large grains and gravel are supported 
by a cohesive matrix of interstitial fluid 
and mud with finite yield strength 
(Middleton and Hampton, 1973). 
Channel deposits commonly exhibit the 
following facies that represent a spectrum 
of submarine mass-movement processes 
(Mutti and Normark, 1987; Clark and 

Pickering, 1996; Campion et al., 2000; 
Sullivan et al., 2000; Barton et al., 2010; 
Hubbard et al., 2009, 2014) (Fig. 1): 
	 1) thick-bedded, amalgamated 
sandstone and/or sand-matrix 
conglomerate deposited from the 
collapse of high-density turbidity 
currents (suspended load) and through 
tractional reworking of sediment (bed 
load); 
	 2) thin, interbedded sandstone and 
mudstone deposited from low-density 
turbidity currents; 

	 3) stratified mudstone deposited 
from dilute, low-density turbidity 
currents and the subsequent suspension 
sedimentation of mud between 
turbidity currents; 
	 4) ungraded sandstone and/or 
conglomerate with a muddy matrix, 
deposited from debris flows; and 
	 5) contorted (overturned and/or 
offset stratification) heterolithic units 
deposited from slumps and/or slides.
	 Outcrops of the Cretaceous Tres Pasos 
Formation, Magallanes basin, southern 

Figure 1: Submarine-channel facies of the Cretaceous Tres Pasos Formation, Magallanes basin, 
southern Chile. (A-B) Photograph and line-drawing trace of channel axis to margin facies 
associations. Yellow is sand-rich; gray is mud-rich lithology. (C) Schematic cross section of a 
channel-fill architectural element (Sullivan et al., 2000). (D) Photograph and schematic cross 
section of asymmetric channel fill in the Tres Pasos Formation (Reimchen et al., 2016).
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Chile, record excellent examples of 
these submarine-channel facies and 
their spatial distribution (Macauley and 
Hubbard, 2013; Hubbard et al., 2014) 
(Figs. 1 and 2). The Magallanes basin 
is a retroarc foreland basin that formed 
in response to Andean uplift during the 
Late Cretaceous (Fosdick et al., 2011). 
Deep-water conditions persisted in 
the basin as a result of a backarc basin 
heritage (Rocas Verdes basin) and the 
formation of underlying attenuated 
continental crust (Fildani and Hessler, 
2005; Romans et al., 2010). The deep-
water basin was eventually filled axially 
from north to south by a prograding 
shelf-margin clinoform system that 
linked slope turbidite systems to shelf-
edge deltaic strata (Hubbard et al., 
2010). Channel fills summarized here 
are interpreted to have been deposited 
25-30 km from the paleoshelf edge in 
1000-1500 m of water (Hubbard et al., 
2010).
	 Submarine-channel facies of the 
Tres Pasos Formation are confined by 
two key scales of stratigraphic surface 
that can be correlated and mapped for 
tens to hundreds of meters (Fig. 1). 
Hubbard et al. (2014) documented 
a primary channel surface (250-300 
m wide; <24 m of relief), which is 
sometimes characterized by a notched, 
or stepped, cross-sectional profile. 
This surface defines a channel fill, or 
channel architectural element (e.g., 
Sullivan et al., 2000; Mayall et al., 
2006; McHargue et al., 2011) (Figs. 1 
and 2). The primary channel surface 
is interpreted to have been created as 
a result of incision of the seafloor by a 
series of high-energy turbidity currents 
(e.g., Elliott, 2000; Fildani et al., 2013). 
The notched cross-sectional profile 
might indicate that the processes of 
channel formation involved multiple 
phases of erosion to different depths 
(Hubbard et al., 2014). Secondary 
surfaces are smaller (200-250 m wide; 
<6 m relief) and locally truncate beds 
within the channel fill. 
	 In the Tres Pasos Formation, thick-
bedded sandstone (facies 1, above) 
was deposited in the thalweg (Fig. 1). 
The sandstone transitions laterally 
to finer-grained deposits (facies 2-5) 

in the channel margins (Fig. 1). The 
turbidity currents that deposited 
thick-bedded sandstone (facies 1) in 
the thalweg did not always deposit 
sand directly against the erosive edges 
of the primary channel surface (Fig. 
1). The deposits of the upper, more 
dilute and fine-grained portions of the 
turbidity currents (facies 2) onlap or 
drape the primary or secondary channel 
surfaces in the channel margins (Fig. 
1). Instability of thin-bedded facies on 
channel margins can result in slump 
and/or slide deposits (facies 5). The 
fine-grained channel-margin deposits 
contain an order of magnitude more 
numerous sedimentation units, which 
individually represent deposition 
from a single turbidity-current event 

(Hubbard et al., 2014). Therefore, 
the channel margins contain a more 
complete record of turbidite deposition 
and downstream sediment dispersal. 
Hubbard et al. (2014) interpreted the 
origins of channel-margin turbidites 
to be deposition from the tails of 
bypassed turbidity currents and/or the 
marginal equivalents of subsequently 
eroded turbidites deposited in the 
thalweg. Hubbard et al. (2014) used 
these stratigraphic observations to 
demonstrate the protracted nature of 
submarine channels, showing evidence 
for numerous incision, sediment 
bypass, and depositional events during a 
channel lifecycle. 
	 Sinuous channel fills commonly 
exhibit sandstone-rich facies in outer 

Figure 2: Stacking patterns of submarine-channel fills of the Cretaceous Tres Pasos Formation, 
Magallanes basin, southern Chile. (A) Location map. (B) Interpretive cross section of incising-
to-aggrading stacking patterns of submarine-channel fills of the Tres Pasos Formation. Yellow 
is sand-rich; gray is mud-rich lithology. (C-D) Photograph and line-drawing trace of stacked 
submarine-channel fills.
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bends and finer-grained facies in inner 
bends (Fig. 1D) (Abreu et al., 2003; 
Campion et al., 2005; Pyles et al., 2010; 
Reimchen et al., 2016). This variability 
of facies across a strike-oriented cross 
section of a channel fill, or facies 
asymmetry, is likely a result of elevated 
shear stresses along outer bends (Jobe et 
al., 2010; Pyles et al., 2010): sediment 
gravity flows have the highest velocities 
close to the outer bank (Straub et al., 
2008; Peakall and Sumner, 2015). The 
degree of facies asymmetry probably 
correlates with the morphological 
asymmetry, which is a function of 
sinuosity and curvature. Straight 
channel segments and inflection points 
between channel bends tend to have 
more symmetric facies patterns than 
bend apices (Reimchen et al., 2016).
	 Researchers have recently suggested 
that turbidite facies in outcrop can 
be associated with internal hydraulic 
jumps in a supercritical turbidity 
current overriding cyclic steps (Postma 
et al., 2014; Postma and Cartigny, 
2014). Supercritical turbidity currents 
are defined by the densimetric Froude 
number, Frd, exceeding unity (Frd 
=U/√g’h, where U is velocity, g’ is 
reduced gravitational acceleration, 
and h is depth of a current). Cyclic 
steps are long-wave (the ratio of 
wavelength to height is >>1), upstream-
migrating bedforms, commonly with 

asymmetrical waveforms in cross 
section, which develop in regions with 
high gradients and slope breaks that 
promote repeated internal hydraulic 
jumps in an overriding turbidity 
current (Kostic, 2011). These bedforms 
have been documented in field-
scale observations combined with 
morphodynamic modeling (e.g., Fildani 
et al., 2006; Kostic, 2011; Covault 
et al., 2014), physical experiments 
(e.g., Spinewine et al., 2009), direct 
monitoring of turbidity currents (e.g., 
Hughes Clarke, 2016), and recently in 
outcrops (Postma et al., 2014). These 
features might play a significant role 
in the development of stratigraphic 
architecture and facies distribution 
within relatively high-gradient channels. 
However, most outcrops are limited 
in scale compared to the size of cyclic 
steps (up to ~103 m wavelength; ~102 m 
height; Symons et al., 2016), and facies-
based recognition remains a challenge.

SUBMARINE-CHANNEL 
STRATIGRAPHIC 
EVOLUTION
	 The stratigraphic evolution of 
submarine channels generally includes 
the creation of a large-scale, composite, 
erosional bounding surface (i.e., 
valley) as a result of incision and lateral 
migration of the active channel floor 
during early channel-system evolution, 

followed by stacking and aggradation 
of leveed channels during later 
evolution (Deptuck et al., 2003; 2007; 
Posamentier, 2003; Mayall et al., 2006; 
Hodgson et al., 2011; McHargue et al., 
2011; Sylvester et al., 2011; Janocko 
et al., 2013; Bain and Hubbard, 2016) 
(Figs. 2 and 3). In outcrop, these large-
scale composite surfaces are commonly 
associated with deposits of debris flows, 
slumps, and/or slides (facies 4 and 5) 
(Hodgson et al., 2011; Macauley and 
Hubbard, 2013).
	 A relatively high rate of incision of 
the active channel floor can result in 
a complex architecture at the base of 
the channel system, in which erosional 
remnants of sandstone-dominated 
channel fills are preserved on the valley 
side; these remnants usually originate 
as meander-bend cutoffs (Sylvester et 
al., 2011; Sylvester and Covault, 2016). 
This early phase of channel evolution is 
poorly understood because the preserved 
stratigraphic record is commonly 
fragmented or completely absent as a 
result of subsequent erosion (Sylvester 
and Covault, 2016). 
	 As the incision rate decreases, the 
preservation potential of channel 
deposits increases, but channels tend 
to erode into previously deposited 
sediment. This stage is characterized 
by limited incision or aggradation but 
significant lateral migration of channels; 
the resulting stratigraphy consists of 
numerous erosional channel remnants 
that usually fill the valley floor from 
one side to the other and there is only 
one continuous channel thread that can 
be seen and mapped across the area of 
interest (Figs. 2 and 3). 
	 Following the early phases of incision 
and lateral migration, aggradation of the 
channel floor and bounding levees at 
the top of the channel system promotes 
greater preservation and results in more 
continuous and vertically connected 
sandstone-rich facies bounded by finer-
grained deposits (Kane and Hodgson, 
2011; Sylvester et al., 2011; McHargue 
et al., 2011; Janocko et al., 2013; 
Macauley and Hubbard, 2013) (Figs. 2 
and 3). Submarine channel aggradation 
rates are usually much higher than those 
observed in fluvial systems (Peakall et al., 

Figure 3: (A) High-resolution (~80 Hz) seismic-reflection profile across submarine-channel 
system CLS3 of the Indus Fan (Deptuck et al., 2003; Sylvester et al., 2011). (B) Interpretive 
line-drawing of the channel-levee system shown in (A), illustrating the change from laterally to 
vertically stacked channel deposits. Yellow is sand-rich; gray is mud-rich lithology.
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2000; Sylvester et al., 2011; Jobe et al., 
in press).
	 We illustrate the incising-to-
aggrading trajectory of channel 
systems in a surface-based stratigraphic 
forward model that is inspired by a 
kinematic model of river meandering 
(Fig. 4). The model is based on an 
implementation of the Howard and 
Knutson (1984) meandering channel 
model, a computationally simple and 
fast approach for generating sinuous 
channel centerlines with realistic shapes. 
Using an approach similar to that of 
Finnegan and Dietrich (2011), we 
track along-channel slope variability; 
this increases the complexity of the 

model as cutoff-related knickpoints 
cause re-incisions (Sylvester and 
Covault, 2016). For the generation of 
topographic and stratigraphic surfaces, 
we use three simple steps for each 
centerline: 1) channel-base erosion; 2) 
channel-filling sand deposition; and 3) 
overbank mud deposition (Sylvester et 
al., 2011; Sylvester and Covault, 2016). 
The resulting surface-based model 
captures large-scale submarine-channel 
architecture, but bed-scale lithological 
variability is not represented (Fig. 4).
	 The commonly observed incising-to-
aggrading trajectory of a channel system 
is likely influenced by both autogenic 
and allogenic controls. The similarities 

in stratigraphic evolution and resulting 
facies architecture of submarine-channel 
systems suggest common processes in 
different continental-margin settings 
(Deptuck et al., 2003; McHargue et 
al., 2011). The incising-to-aggrading 
trajectory might reflect adjustments 
toward an equilibrium state, in which 
sediment is transported through a 
channel with minimum incision or 
aggradation of the seafloor (Pirmez 
et al., 2000; Hodgson et al., 2011; 
McHargue et al., 2011; Janocko et al., 
2013). Equilibrium is established and 
maintained by feedbacks between the 
slope and overriding sediment-gravity 
flows: a steep slope will promote swift 
flows that are erosive; a more gradual 
gradient will promote sluggish flows 
that aggrade sediment (Kneller, 2003; 
Ferry et al., 2005). A combination 
of these two processes brings the 
channel floor closer to an equilibrium 
gradient. For example, a channel on the 
steeper, down-dip side of an anticline 
will undergo upstream-propagating 
incision until equilibrium is achieved. 
Knickpoints probably play an important 
role in submarine channel incision 
(Heiniö and Davies, 2007; Sylvester 
and Covault, 2016). Channel segments 
affected by ongoing subsidence are 
likely to respond with deposition. Steep 
submarine slopes are commonly related 
to incision of erosional surfaces during 
early channel evolution (Ferry et al., 
2005). The transition from laterally 
stacked and cutoff channel deposits 
at the base of the system to more 
continuous and aggradational channel 
and overbank deposits at the top might 
also be related to levee deposition across 
a reduced slope as a result of grading 
the slope to an equilibrium profile 
(Peakall et al., 2000; Pirmez et al., 2000; 
Hodgson et al., 2011; McHargue et al., 
2011).
	 Changes in sediment-gravity-flow 
properties driven by allogenic controls, 
such as eustatic sea-level change, have 
also been linked to the incising-to-
aggrading trajectory (Pirmez et al., 
2000; Posamentier and Kolla, 2003; 
Piper and Normark, 2001; Deptuck 
et al., 2003; Kneller, 2003; Ferry et al., 

Figure 4: (A) Surface-based stratigraphic forward model of the incising-to-aggrading 
trajectory of a channel system (Sylvester and Covault, 2016). Bed-scale lithological variability 
is not represented. (B) Detailed depositional-strike-oriented cross section. Yellow is sand-rich; 
gray is mud-rich lithology. (C) Depositional-dip cross section.
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2005; McHargue et al., 2011; Jobe et 
al., 2015). For example, diminished 
sediment supply as a result of gradual 
shoreline transgression might yield 
underfit sediment gravity flows that were 
confined by overdeepened bounding 
surfaces, preventing flows from 
overspilling and promoting inner levee 
and channel aggradation (Deptuck et al., 
2012; Janocko et al., 2013; Jobe et al., 
2015). More work is needed to better 
understand the commonly observed 
shift from incision to aggradation (Jobe 
et al., in press).

SUBMARINE-CHANNEL  
RESERVOIR 
CHARACTERIZATION
	 Integrated subsurface characterization, 
modeling, and flow simulation studies 
have evaluated the effect of facies 
architecture on channelized reservoir 
connectivity and performance (Larue 
and Hovadik, 2006; Stright, 2006; 
Labourdette, 2007; Stewart et al., 2008; 
Funk et al., 2012; Alpak et al., 2013). 
For example, Larue and Hovadik (2006) 
simulated oil production with water 
injection in simple 3D geostatistical 
models of channelized reservoirs. They 
found that fine-grained facies, such as 
mud-rich turbidites and debrites draping 
channel floors, decreased connectivity 
(Larue and Hovadik, 2006; see also 
Stright, 2006; Labourdette, 2007; 
Stewart et al., 2008; Li and Caers, 
2011; Alpak et al., 2013). Stewart et al. 

(2008) performed flow simulations on a 
model describing the submarine-channel 
facies architecture of the Miocene-
Pliocene Capistrano Formation, 
southern California, to evaluate the 
effect of heterogeneity and connectivity 
on hydrocarbon recovery. Facies 
architecture represented in these models 
included the presence of basal high-
permeability zones in the center of each 
channel and lower permeability zones 
in the margins of channel fills (Stewart 
et al., 2008). This facies architecture 
had a significant negative impact on 
recovery and timing of injected water 
breakthrough compared to models that 
did not contain such organized extremes 
of permeability (Stewart et al., 2008). 
	 Fluid flow behavior during 
hydrocarbon production is likely to 
vary according to reservoir architecture 
that differs as a function of the incising-
to-aggrading trajectory of a channel 
system (Fig. 5). At the base of a channel 
system, the complex juxtaposition of 
cutoff and eroded sandstone-rich facies 
against finer-grained facies results in 
an abundance of short length-scale 
heterogeneity (Fig. 5). Within this type 
of reservoir architecture, connectivity 
between injector-producer well pairs 
is likely to be established via multiple 
remnant channel sand bodies, which has 
the potential to promote efficient sweep 
by reducing the organized structure 
of permeability extremes. At the top 
of a channel system, injected water 

might preferentially sweep the more 
continuous and vertically connected 
sandstone-rich facies, bypassing oil 
in thin-bedded heteroltihic deposits 
(e.g., Stewart et al., 2008) (Fig. 5). 
Future work should focus on the effect 
of submarine-channel stratigraphic 
evolution and facies architecture on 
fluid flow behavior during hydrocarbon 
production (cf. Meirovitz et al., 2016).

SUMMARY
	 Submarine-channel systems are 
composed of channel fills with thick-
bedded turbidite sandstone deposited 
in the thalweg, thin-bedded heterolithic 
turbidites in the margin, and scour 
surfaces draped with turbidite mudstone 
and/or mudstone-dominated units 
deposited by debris flows, slumps, and/
or slides. Submarine-channel stratigraphic 
evolution commonly reflects an incising-
to-aggrading trajectory that results in a 
lower zone of cutoff and eroded channel 
deposits overlain by an upper zone of 
more continuous and vertically connected 
sandstone-rich facies. However, channel 
systems can also be ‘frozen’ in time 
at different stages of their evolution 
(e.g., Janocko et al., 2013). Outcrop 
characterization and a stratigraphic 
forward model illustrate the 3D stacking 
patterns of channel systems. The 3D 
facies architecture that results from the 
incising-to-aggrading trajectory of a 
channel system is viewed as a primary 
control on reservoir heterogeneity and 
connectivity.
	 Future research opportunities include 
constraining fundamental processes that 
operate in submarine channels via analysis 
of stratigraphic products integrated with 
short-term observations from direct 
monitoring and physical experiments; 
this is particularly critical as observing 
natural flows in the deep sea has proven 
challenging. The importance of hydraulic 
jumps, cyclic steps, and knickpoints 
in submarine-channel evolution are all 
active research topics. The integration of 
morphodynamic numerical modeling 
with outcrop characterization can be 
employed to evaluate the long-term 
evolution of bed-scale sedimentary 
processes and products. Autogenic 
and allogenic controls on stratigraphic 

Figure 5: Hypothetical submarine-channel-system facies architecture (i.e., facies heterogeneity 
and stacking patterns) inspired by outcrop (Figs. 1 and 2) and stratigraphic forward model 
(Fig. 4) and potential fluid flow behavior during hydrocarbon production. (A) Cross section 
of incising-to-aggrading trajectory of a submarine-channel system. Yellow is sand-rich; gray 
is mud-rich lithology. Green lines indicate sand body connectivity. Red lines indicate baffles 
or barriers between sand bodies in cross section. Approximate locations of B and C are blue 
and pink dashed boxes, respectively. (B) Lower zone of cutoff and eroded channel deposits. 
Downstream continuity of sand-rich facies is likely oversimplified. Water injector well (Water 
Inj.) is a blue dot. Producer well is a green dot. (C) Upper zone of more continuous and 
vertically connected sandstone-rich facies. See text for explanation.
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evolution are also active research topics. 
These controls are important as they 
determine the stratigraphic evolution and 
facies architecture of submarine-channel 
systems, thereby influencing continental-
margin sediment dispersal, as well as 
the heterogeneity and connectivity of 
channelized reservoirs.
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