Criteria for recognizing a high-paleolatitude context for sedimentary successions are not widely established. Herein, we provide a facies analysis of the Permian succession of the high-paleolatitude Denison Trough in the southwestern Bowen Basin of Queensland, eastern Australia, and we use this analysis to highlight criteria that may be used to diagnose a high-paleolatitude context in this and other successions. A unified facies scheme for several formations, combining sedimentological and ichnological criteria, recognizes both deltaic and nondeltaic facies within the succession. Whereas a full array of deltaic facies is evident, ranging from distal prodelta to coastal plain, a more limited array of nondeltaic facies is recognized, ranging from shelfal to lower shoreface. The dominance of deltaic facies in the succession suggests that coastlines were overwhelmingly deltaic in aspect. The absence of middle and upper (nondeltaic) shoreface deposits suggests that shallow-water settings were constantly under physico–chemical stresses associated with deltaic efflux, and/or that such deposits were excised by transgressive ravinement following deposition. Deltas were mostly arcuate in planform, consistent with strong wave influence, although some show a more irregular or lobate plan morphology, suggesting significant fluvial influence. Four intervals within the Permian succession (coded P1 to P4) preserve evidence of formation under the direct or indirect (glaciomarine) influence of glacial ice. Palpable evidence of the high-paleolatitude context of the succession is preserved only in these intervals, most commonly in the form of dropstones, glendonite pseudomorphs after ikaite, gravel-grade clasts with modified shapes, and diamictites. In addition to vertical changes into and out of glacial intervals, paleolatitudinal changes in glacially influenced facies are evident across the 25- to 30-degree meridional transect from the Bowen Basin south to the Tasmanian Basin. Outside of glacial intervals P1 to P4, there are few sedimentological or ichnological indicators of high-paleolatitude deposition. Facies characteristics of deposition under glacial influence are therefore crucial to diagnosing the high-paleolatitudinal context of this and other successions.